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 ABSTRACT 
 

A microcomputer-based program named TRENDS implements the 
power analysis for detecting trends in abundance using linear 
regression described in Gerrodette, Ecology  68: 1364-1372 (1987) 
and Gerrodette, Ecology  72: 1889-1892 (1991).  TRENDS is simple to 
use and allows easy calculation of statistical power, number of 
sampling occasions, sample precision, and detectable rate of change 
in abundance.  This manual describes program structure, outlines 
numerical techniques, lists error messages, and gives several 
detailed examples of the program's use. 
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 INTRODUCTION 

 

Linear regression is often used to assess trends in some 

quantity of interest to wildlife biologists, such as population 

size, c ommunity diversity, or birth rate.  For ease of explanation, 

change in population size is used as an example in this guide, but 

the results apply equally well to any linear regression problem.  

Gerrodette (1987, 1991) described an approach for conducting a 

power a nalysis of linear regression.  The numerical solution of the 

equations given in those papers, however, is not trivial, 

particularly if the calculations are based on the t distribution.  

Program TRENDS is a user-friendly program to carry out those 

calculations.  The program structure makes it easy to see the 

effect of altering various parameters on the value of the computed 

parameter of interest.  TRENDS was developed to aid in designing 

field s tudies, but it could also be useful to teachers and students 

in a course on field methods or experimental design. 

The approach implemented here assumes that we plan to make a 

series of independent estimates of abundance of some quantity of 

interest, at equal intervals of an independent variable, such as 

time or distance, and to follow the same methods of estimation on 

each sampling occasion.  A trend is evaluated by regressing the 

estimates of abundance against time or distance and testing the 

slope of the regression line against a null hypothesis of zero 

slope.  Such an experimental design will usually satisfy the 
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assumptions of linear regression closely, with two important 

exceptions: 

(1) If the nature of the process of change is multiplicative 

rather than additive, points will not be linear but will lie along 

an exponentially increasing or decre asing curve.  This is a common 

situation for many practical problems of interest.  A logarithmic 

transformation of the estimates will make them linear, and such a 

transfo rmation usually has the additional positive effect of making 

the var iances more nearly equal.  Program TRENDS allows the user to 

choose between linear and exponential models of change. 

(2) Even if equal effort and identical methods are used on 

each sampling occasion, the variances of the estimates will in 

general not be equal, as required by linear regression, but will be 

some function of abundance A.  The situations treated here, which 

corresp ond to common methods of estimating population size, let the 

variance be proportional to A, A 2, or A 3 (Gerrodette 1987).  In 

program TRENDS this is implemented by having the user choose among 

3 patterns of change of coefficient of variation (CV=standard 

error/mean) with abundance:  CV proportional to A - 2, CV constant 

with A, or CV proportional to A 2. 

Gerrodette (1987, 1991) summarized the problem in 5 

parameters: n, the number of sampling occasions;  r, the rate of 

change in abundance that occurs between each sampling occasion;  

CV1, the coefficient of variation of the first estimate of 

abunda nce in the series;  α, the significance level (probability of 

Type 1 error);  and the statistical power (1 - β, where β is the 
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probability of Type 2 error).  The value of any parameter can be 

estimated if the other 4 are specifi ed.  The parameter of interest 

depends on the application. 

The relations among these param eters are affected by a number 

of factors: (1) whether change is linear or exponential;  (2) 

whether change is positive or negative;  (3) whether the 

statistical test is 1- or 2-sided;  (4) how the precision of the 

estimates depends on abundance;  and (5) whether the standard 

normal (z) or Student's (t) distribution is used in the 

calculations.   

More general approaches along the lines suggested in section 

(3) of Gerrodette (1991) are not imp lemented at this time.  Future 

additions could allow sampling at unequal intervals, arbitrary 

patterns of variance, detection of nonlinear patterns, and 

correlation among estimates. 



 
 

4 

 

 PROGRAM STRUCTURE 

 

Program TRENDS is written in Microsoft FORTRAN 77 and the 

executable file will run on an IBM-compatible microcomputer.  The 

main driver is an I/O interface that calls subroutine TREND, which 

carries out the calculations.  Subro utine TREND, together with its 

supporting subroutines and functions, could be used in another 

user-written main program, if desired.  TREND requires 2 specific 

external functions (FXL and FXE), 2 subprograms to compute the z 

and noncentral t cumulative distribution functions (CUMPR and 

PRNCT), and 2 subprograms to compute the inverses of those 

distribution functions (ZINV and TINV).  Users could substitute 

their own routines for the latter 4 if desired.   

The basic equations to be solved are 
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for a t rend in either direction.  If the z distribution is used, as 

above, Φ is the distribution function for the standard normal 
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distribution.  If the t distrib ution is used, replace z α by t α,n-2  in 

the equations above, and let Φ be the distribution function for the 

noncentral t distribution.  b is the expected value of the true 

slope of the regression line and σb its standard deviation;  both 

are functions of r, n, and CV1.  The exact expressions for b and σb 

as func tions of r, n, and CV1 depend on the model of change (linear 

or expo nential) and the pattern of change of CV with abundance, and 

are complicated (Link and Hatfield 1 990).  However, approximations 

given in Gerrodette (1987) are satis factory for most cases and are 

used here.  Roots are located with a tolerance of 0.001 using 

Brent's method (Press et al., 1989), slightly modified as ZBRENT.  

Initial root bracketing is accomplished with ZBRAC, another routine 

slightly modified from Press et al. (1989).   

Program TRENDS accepts input either interactively or from an 

input f ile named TRENDS.INP.  As values are given interactively, an 

input file is created so that runs can be repeated, or single 

values can be changed easily.  Before computations are started, the 

program displays the input values and gives the user the 

opportunity to change any of them.  Output is displayed on the 

screen and also saved in a file named TRENDS.OUT. 
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 EXAMPLES 

Sea otter  

The sea otter example is described on p. 1368-69 of the 1987 

paper.  In an unpublished USFWS report, J.A. Estes reported the 

results of 7 replicate aerial strip transects for sea otters as: 

582, 456, 415, 560, 519, 545, 611.  The mean of these counts is 

527, the sample standard deviation 69.7, and the coefficient of 

variation 0.13.  Note that although the exponential model is used 

below, the CV is computed on untransformed counts. 

   This first example shows user input and program output in 

detail.  User input, shown in bold l ettering, is case insensitive. 

 
 TRENDS     [Header appears]  
 
 
 One of the following parameters can be computed: 
 
  (1)  number of samples (n)             
  (2)  rate of change (+/- r)        
  (3)  initial coeff. of variation (CV1) 
  (4)  significance level (alpha)        
  (5)  power (1-beta)                    
 
 Enter value for index of parameter to be computed: 5  
 

[Power is selected, so program 
 now prompts for other values] 

 
 Enter value for number of samples (n)            : 5 
 
 Enter value for rate of change (+/- r)           : .1  
 
 Enter value for initial coeff. of variation (CV1): .13  
 
 Enter value for significance level (alpha)       : .05  
 
 Enter value for 1- or 2-tailed test              : 2 
 
 Enter value for model (1=linear, 2=exponential)  : 2 
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    1=CV proportional to 1/sqrt(A) 
    2=CV constant with A 
    3=CV proportional to sqrt(A) 
 
 Enter value for pattern of CV with abundance A   : 1 
 
    1=use z distribution (variance assumed known) 
    2=use t distribution (variance est. from residuals) 
 
 Enter value for distribution index (1=z, 2=t)    : 1 
 

[Input is complete; program displays 
 input values and prompts for change] 

 
 You have specified the following input values: 
 
 (1)  5                 number of samples (n)   
 (2)  .100              rate of change (+/- r)        
 (3)  .130              initial coeff. of variation (CV1)   
 (4)  .050              significance level (alpha) 
 (5)  (to be computed)  power (1-beta)  
 (6)  2                 1- or 2-tailed test 
 (7)  2                 model (1=linear, 2=exponential) 
 (8)  1                 pattern of CV with abundance A   
 (9)  1                 distribution index (1=z, 2=t)     
 
 
 To proceed with these values, press ENTER; 
 to change one of them, enter the line number:  <ENTER> 
 
 
 
 *** PROGRAM TRENDS OUTPUT *** 
 
 Model of change: EXPONENTIAL  
 Pattern of variance: CV PROPORTIONAL TO 1/SQRT(A)  
 Calculation based on Z distribution 
 Alpha =       .050 (2-tailed) 
 Rate  =       .100 
 CV    =       .130 
 Sample size =    5 
 
 Given these parameters, power is estimated to be   .72 
 
 

 
 Do you wish to try another calculation? (Y/N)  y 
 

[We'll try another combination] 
 
 You have specified the following input values: 
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 (1)  5                 number of samples (n)   
 (2)  .100              rate of change (+/- r)       
 (3)  .130              initial coeff. of variation (CV1)   
 (4)  .050              significance level (alpha) 
 (5)  (to be computed)  power (1-beta)  
 (6)  2                 1- or 2-tailed test 
 (7)  2                 model (1=linear, 2=exponential) 
 (8)  1                 pattern of CV with abundance A   
 (9)  1                 distribution index (1=z, 2=t)     
 
 
 To proceed with these values, press ENTER; 
 to change one of them, enter the line number:  2 
 

[We ask to modify the rate of change] 
 
 Enter value for rate of change (+/- r)           : -.1  
 

[The rate is changed to a 10% decline] 
 
 You have specified the following input values: 
 
 (1)  5                 number of samples (n)   
 (2) -.100              rate of change (+/- r)        
 (3)  .130              initial coeff. of variation (CV1)   
 (4)  .050              significance level (alpha) 
 (5)  (to be computed)  power (1-beta)  
 (6) -2                 1- or 2-tailed test 
 (7)  2                 model (1=linear, 2=exponential) 
 (8)  1                 pattern of CV with abundance A   
 (9)  1                 distribution index (1=z, 2=t)     
 
 
 To proceed with these values, press ENTER; 
 to change one of them, enter the line number:  <ENTER> 
 
 
 
 *** PROGRAM TRENDS OUTPUT *** 
 
 Model of change: EXPONENTIAL  
 Pattern of variance: CV PROPORTIONAL TO 1/SQRT(A)  
 Calculation based on Z distribution 
 Alpha =       .050 (2-tailed) 
 Rate  =      -.100 
 CV    =       .130 
 Sample size =    5 
 
 Given these parameters, power is estimated to be  .64 
 

[Note the asymmetry in power between 
increasing and decreasing trends] 
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 Do you wish to try another calculation? (Y/N)  n 
 
 
 Results for this run are stored in TRENDS.OUT. 
 

[Exit TRENDS, return to system control] 
 
 

For this example, the exponential model was chosen because the 

population was recovering from previous heavy exploitation.  CV 

proport ional to 1/sqrt(A) was chosen because the flights were strip 

transects (see Gerrodette 1987, Table 1).  The z distribution was 

chosen for consistency with the results of the 1987 paper; more 

discussion of this choice follows with the deer example. 

At the conclusion of the run, the file TRENDS.OUT contains the 

results of all calculations, and the file TRENDS.INP contains the 

input values for the last calculation.  For the example run above, 

the input file would now be: 

 

  5                 index of parameter to be computed 
  5                 number of samples (n)             
 -.100              rate of change (+/- r)            
  .130              initial coeff. of variation (CV1) 
  .050              significance level (alpha)        
  (to be computed)  power (1-beta)                    
 -2                 1- or 2-tailed test               
  2                 model (1=linear, 2=exponential)   
  1                 pattern of CV with abundance A    
  1                 distribution index (1=z, 2=t)     
 
 

Notice that the first record indicates the parameter to be 

computed, but this is not displayed on the screen.  The input file 

can be edited directly with any ASCII editor, but this is not 

recommended because it will bypass error checks within the program. 
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The sign of line 2 (rate of change) and line 6 (1- or 2-tailed 

test) should always be the same;  the program will enforce this.  

The reason for using a sign on line 6 occurs when r is the 

parameter to be estimated.  The user indicates whether the positive 

or negative solution for r is desired by the sign given on line 6. 

 Solutions for increasing and decreasing trends will generally be 

different, as the example run shows. 

 

The results are to be interpreted as follows: 

 

If the parameter to 
       be computed is              the answer means that 
------- ------------------------------------------------------------ 
          n     n is the minimum number of sampling 

occasions that are needed at the 
given error rates;  the number of 
sampling intervals is n-1. 

 
r    r is the minimum rate of change (per 

sampling interval) that can be 
detected at the given error rates. 

 
CV1    CV1 is the maximum permitted CV 

(minimum required precision) for the 
initial sample at the given error 
rates;  CVs change with samples 
according to the pattern specified 
on line 8. 

 
α    α is the probability of obtaining a 

significant trend (slope 0) falsely 
(Type 1 error). 

 
power   power is the probability of 

obtaining a significant trend 
(slope 0) correctly (= 1- β, where β 
is the probability of Type 2 error). 
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White-tailed deer  

Storm et al. (1992) reported a comparison of 2 techniques for 

estimating deer density near Gettysburg National Military Park.  

This example is based on the data presented in their Table 2 for 

the November population estimates, summarized below: 

               Mark-resight              Area-conversion 
         ------------------------    ------------------------ 
Year       Est.    SE       CV         Est.    SE       CV    
------------------------------------------------------------- 
1987       983    26.8    0.027        692    91.3    0.132 
1988      1220    99.2    0.081        850    88.4    0.104 
1989      1647   191.5    0.116       1164   180.4    0.155 
1990      1592   136.5    0.086       1013    53.8    0.053 
  Mean                    0.078                       0.111 
 
 

These data are used with TRENDS to obtain approximate answers 

to the following questions: 

(1) If the deer population is monitored for 5 years, what is 

the probability of being able to detect a 10%/year growth in 

population size? 

(2) If the deer population is monitored for 5 years, what is 

the min imum rate of population growth that we can expect to be able 

to detect with 90% probability? 

(3) How many years must the population be monitored to be able 

to detect 10%/year rate of population growth with 95% probability? 

To answer these questions, we must make some choices about the 

different options that TRENDS offers.  Let us assume a significance 

level ( α) of 0.05, a 2-tailed test, and an exponential model of 

growth.  From the table above, it is obvious for the mark-resight 

method that CV increases with abundance, so we choose the option 
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"CV proportional to sqrt(A)."  Notice that this choice is also 

expected on theoretical grounds for mark-recapture-type population 

estimates (Gerrodette 1987, Table 1).  For the area-conversion 

method, plotting CV against sqrt(A) or 1/sqrt(A) shows no clear 

relationship; we therefore choose the middle option "CV constant 

with A."   

We also need to estimate the in itial coefficient of variation 

CV1.  TRENDS uses the CV computed on the untransformed data.  One 

method is simply to average the annual CVs, giving 0.078 and 0.111 

for the mark-resight and area-conversion methods, respectively.  

However, these are probably underestimates of the residual variance 

we can expect in future surveys for the following reasons. 

First, CV1 is the coefficient of variation at the beginning  of 

the monitoring period.  As abundance changes, CV will also change, 

as shown above for the mark-resight estimates.  If monitoring will 

begin in 1991, a CV estimated from the most recent years will be 

better than an average of all years.  An improved estimate for the 

mark-resight method, therefore, would be CV1 = (.116+.086)/2 = 

0.101.  CV for the area-conversion method does not seem to be 

related to abundance, so the average CV of all years is retained. 

Second, averaging the annual CVs does not account for 

additional residual variance about the regression line that will 

occur because of variation in r.  Several reviewers have pointed 

out this problem; it is also discussed in Gerrodette (1987).  Even 

if population size were known exactly each year (no estimation 

error), the points would not lie pre cisely on the regression line, 
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but would deviate from it due to various stochastic factors.  If we 

are so fortunate as to have data from past surveys, as in the 

present example, the additional variation can be estimated by 

regression.  On untransformed mark-resight data, regression of 

population estimate on year gives an estimate of CV1 = root mean 

square error / mean y = 148/1361 = 0.109; alternately, on log-

transformed mark-resight data, CV1 = root mean square error = 

0.110.  These answers are nearly ide ntical.  Note that the RMSE of 

the log-linear regression is used directly as an estimate of the 

untransformed CV.  For the area-conversion method estimates, 

similar calculations give CV1 = 0.158 and CV1 = 0.151 for 

untransformed and log-transformed regressions, respectively.  The 

estimates of CV1 from the log-transformed regressions, namely, 

0.110 for the mark-resight and 0.151 for the area-conversion, will 

be used in this example. 

TRENDS also asks the user to choose either the standard normal 

(z) or Student's (t) distribution as the basis of calculation.  In 

general, the t distribution should be used. Consider whether, on 

each sampling occasion, the method of estimation or measurement 

produces a single estimate of A, or whether an estimate of var(A) 

is also produced.  The rationale for using the z distribution is to 

take ad vantage of the extra information present when an estimate of 

var(A) is available.  Calculations based on the z distribution, 

however, make stronger assumptions and give more optimistic 

answers.  Refer to Link and Hatfield (1990) and Gerrodette (1991) 

for further discussion.  If in doubt, use the more conservative t 
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distribution. 

With these choices made, the in put file to answer question #1 

for the mark-resight method is 

  5                 index of parameter to be computed 
  5                 number of samples (n)             
  .100              rate of change (+/- r)            
  .110              initial coeff. of variation (CV1) 
  .050              significance level (alpha)        
  (to be computed)  power (1-beta)                    
  2                 1- or 2-tailed test               
  2                 model (1=linear, 2=exponential)   
  3                 pattern of CV with abundance A    
  2                 distribution index (1=z, 2=t)     
 
which gives an estimated probability of detection (power) of 0.41. 
 
For the area-conversion method, the input file is 
 
  5                 index of parameter to be computed 
  5                 number of samples (n)             
  .100              rate of change (+/- r)            
  .151              initial coeff. of variation (CV1) 
  .050              significance level (alpha)        
  (to be computed)  power (1-beta)                    
  2                 1- or 2-tailed test               
  2                 model (1=linear, 2=exponential)   
  2                 pattern of CV with abundance A    
  2                 distribution index (1=z, 2=t)     
 
which yields an estimated probability of detection of 0.29. 
 

Proceeding in a similar way for question #2, we find the 

estimated minimum detectable rate of growth (r) to be 0.25 for the 

mark-resight method and 0.27 for the area-conversion method.  For 

question #3, TRENDS estimates that a minimum of 8 years (actually, 

8 surveys over 7 year-long intervals) will be required with either 

method to detect the growth in population size. 

Despite the greater precision of the mark-resight method, 

these calculations indicate little difference among the 2 

techniques for detecting trends in white-tailed deer herd size.  
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The main reason for this is the assumed pattern of CV with 

abundance: the mark-resight method becomes less precise as 

population increases, so it is less able to detect a trend.  This 

illustrates that the choice of change in CV with abundance can be 

important.  If herd size were declin ing, however, the mark-resight 

method would become more precise and perform better relative to the 

area-conversion method. 

It is usually surprising and so metimes depressing to find out 

how low power is, how high the detectable rate of change is, and 

how many years are required to detect a change.  Although the 

answers given by TRENDS are approximations, they nevertheless 

indicate that we often tend to be overly optimistic about how 

likely our surveys are to detect changes in population size. 

It cannot be emphasized too strongly that the answers provided 

by TRENDS are approximate.  This results from several factors: 

(1) Calculations are dependent on choosing the right model.  

TRENDS assumes we have selected the linear regression model to 

represent our system, but we should never forget that any model is 

an approximation of biological reality.  It is surely an 

oversimplification, for example, to assume that population size 

will ch ange in an exactly regular manner over a period of time, but 

that is the fundamental assumption of a linear regression on a time 

series of population estimates. 

(2) Calculations are conditional on values of parameters not 

known in advance.  Our statements are of the form "If  the 

population grows at 10%/year for the next 5 years, the probability 
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of detecting this growth is 0.41."  But if it turns out that the 

population grew at 15%/year, the probability of detection will be 

quite different.  Estimating a CV that reflects all sources of 

variation is particularly important because the power calculations 

are sensitive to this parameter. 

(3) Calculations are based on the same assumptions as linear 

regression - normal error distributions, equal variances, and 

independence of estimates.  Often we do not know if these 

assumptions are true.  Violations of these assumptions make the 

results of TRENDS (and the linear regression itself) approximate. 

(4) Calculations are based on some numerical approximations 

even if these assumptions are satisfied (see the technical 

discussions in Link and Hatfield 1990 and Gerrodette 1991). 

Nevertheless, answers provided by TRENDS (or a similar power 

analysis) will be useful in (1) assessing whether a proposed design 

has even a reasonable chance of detecting a trend, (2) estimating 

the num ber of sample occasions that will be required, (3) providing 

an estimate of the rate of change that will be detectable, and (4) 

comparing the efficacy of different proposed survey designs.   
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 ERROR CONDITIONS AND POSSIBLE PROBLEMS 

 

Program TRENDS will calculate an answer for reasonable values 

of the parameters, but it is impossi ble to anticipate all possible 

situations.  For some combinations of parameters, no numerical 

solution is possible.  For others, p articularly very large or very 

small values of the parameters, underflow, overflow, or other 

numerical problems may occur.  These will be indicated by run-time 

error messages.  In this case, try less extreme values.  The 

program also has a number of error traps.  Most impermissible 

values will be caught on input, but if not, they may be detected by 

subroutine TREND, which returns the following error codes: 

 
    IER     Error condition 
------------------------------------ ------------------------------ 

1   wrong parameter chosen (must be 1-5) 
2   number of samples (n) too small 
3   rate of change (r) = 0 
4    initial CV # 0 
5   α # 0 or ∃ 1 
6   power # 0 or ∃ 1 
7   tails for test  1 and  2 
8   model of change  1 and  2 
9   change of CV with A < 1 or > 3 

    10   choice of z or t distribution  1 and  2 
    11   wrong tail of distribution (r and ITAIL have 
    opposite signs) 
    12   root not bracketed, hence not found 
 

If the program is used for input, the first 11 errors should 

not occur.  Attempts to input values out of range will trigger 

error messages and the user will be prompted for a new value.  If 
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input file TRENDS.INP is edited dire ctly, no checking occurs until 

subroutine TREND is called, so any of these messages may appear.  

IER = 12 means that the program was unable to solve for a root.  

The combination of input values either does not permit a solution, 

or is so close to one of the boundary conditions that problems were 

encountered.  Try again with less extreme values.  

Careful readers may note small numerical differences between 

the results of TRENDS and some graphs and tables in Gerrodette 

(1987) and Holt et al. (1987).  These are due to improvements to 

the code and the correction of one bug.  The bug affected the 

calcula tions of power for small effects in the 2-tailed case.  Note 

the different y-intercepts of the 1- and 2-tailed curves in Fig. 3 

of Gerrodette (1987).  These should be the same, and equal to the 

Type 1 error rate (0.05 in this case).  The current program has 

corrected this bug. 

Problems encountered when using this program should be 

reported to the author, together with the input file used. 

The National Marine Fisheries Service makes no guarantee, 

expressed or implied, of the performance of this software or its 

fitness for any particular purpose.  In no event will the author or 

the U.S. Government be liable for direct or indirect damages, 

including loss of income, resulting from its use. 
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